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ABSTRACT 

The propagation of dilatational and shear waves through soils produce detrimental effects that need to be considered in the 

design of deep foundations. Additional soil shear stresses are produced due to the propagation of shear waves and due to the 

increase in pile loads caused by the overturning moment acting on the superstructure. Furthermore, the dilatational wave 

produces an increase in pore pressure, which leads to a decrease in the effective stress and consequently a decrease in the soil 

shear strength. 

Helical piles manufactured with multiple helices spaced up to about 3 times the helix diameter derive their compressive 

resistance from shaft friction, cylindrical shear resistance (CSR) and end bearing. Given that the displacement to fully 

mobilize end bearing is relatively large, helical piles subjected to seismic loading must rely on cylindrical shear to resist the 

increment in compressive load if large settlements are to be avoided. Understanding CSR thus becomes of paramount 

importance in the design of helical piles subject to seismic loading. A methodology based on Zeevaert’s theory is presented 

in the present paper that allows designing CSR for seismic loads.    

Keywords: helical piles, soil shear strength, dilatational waves, shear waves. 

INTRODUCTION 

Seismic waves produced by earthquakes propagate from the focus through deep rock towards the earth surface. Two types of 

seismic waves are developed when seismic waves travelling from the zone of generation reach the firm ground - soil deposits 

interphase. These are the dilatational waves and the shear waves, which travel at different speeds and reach the ground 

surface at different times. These seismic waves are important for the design of deep foundations. The surface (Rayleigh) 

wave is a third type of seismic wave, which is developed once the other waves reach the surface and is not considered herein.  

The dilatational waves travel faster than the shear waves and are the first to arrive at the place of observation. The translation 

of dilatational waves requires changes in soil volume. Therefore, in saturated soils they produce high pore water pressures, 

although in saturated soils the displacements they cause are small. On the contrary, shear waves do not produce volume 

changes in the soil during their propagation. However, high shear distortions may be induced and shear stresses greater than 

the soil shear strength could be developed. 

Helical piles are able to develop considerable compressive and uplift resistances, which make them viable as a deep 

foundation alternative in earthquake regions. The pile compressive resistance comprises shaft friction and end bearing, and if 

the helical pile has been manufactured with several helices installed relatively close (typically spaced apart not more than 3 

times the helix diameter), a cylindrical shear resistance (CSR) is developed between the uppermost and lowermost helices, 

which also contributes to the compressive resistance of the pile. Furthermore, the uplift resistance of the helical pile 

comprises shaft friction and upward bearing of the uppermost helix. Piles manufactured with multiple helices adequately 

spaced also develop cylindrical shear resistance in uplift loading. 

The Canadian Foundation Engineering Manual [1] includes design equations to compute the compressive and uplift 

resistance of helical piles applying Limit States Design, using Ultimate Limit States (ULS) and Service Limit States (SLS). 

Those equations have given adequate results, provided that the soil shear strength parameters are accurate. However, in the 

case of earthquake conditions, additional soil shear stresses have to be considered due to the presence of seismic shear waves 

and due to the increase in pile loads caused by the overturning moment acting on the superstructure. Furthermore, the 

dilatational wave produces an increase in pore pressure, which leads to a decrease in the effective stress and consequently a 

decrease in the soil shear strength. On this basis, the design of helical piles in earthquake regions requires analyzing the 

combined effects of an increase in soil shear stress (due to shear wave action plus greater pile loads due to the structure 

overturning moment) and a decrease in soil shear strength (due to an increase in pore pressure). 
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A well designed helical pile subject to compressive load will develop a relatively small vertical displacement when loaded to 

service conditions, typically less than 6 mm. At this load level and vertical displacement, the pile may have developed full 

mobilization of shaft friction, partial mobilization of CSR and small mobilization of end bearing.  Given that the 

displacement to fully mobilize end bearing is relatively large and that no more shaft friction is available, helical piles subject 

to seismic loading must rely on cylindrical shear to resist the increment in compressive load if large settlements want to be 

avoided. Understanding of CSR thus becomes of great importance in the design of helical piles subject to seismic loading.    

The objectives of the present paper are: (1) Discuss the influence of the dilatational and seismic waves on the cylindrical 

shear resistance of helical piles; (2) Apply Zeevaert’s theory [2-5] to determine the decrease in soil shear strength and the 

increase in the soil shear stress due to earthquakes; and (3) Compute the CSR developed when seismic loads are present.   

INCREMENT IN PORE WATER PRESSURE DUE TO DILATATIONAL WAVE 

The increment in pore water pressure due to dilatational waves has been studied by Zeevaert [2], who developed a 

methodology based on the following rationale:  

(a) The dilatational wave propagates from firm ground to the surface according to the following equation: 

𝑣𝑑
2  

 2𝑤

 𝑧 2
 =  

 2𝑤

 𝑡 2
          (1) 

where 𝑤 is the vertical displacement and 𝑣𝑑 is the dilatational wave velocity 

 

(b) From theory of elasticity we know that the soil pressure 𝜎𝑧 is given by: 

𝜎𝑧 = 𝐸𝑐  
 𝑤

 𝑧
           (2) 

where 𝐸𝑐 is the dynamic soil modulus, given by :  

𝐸𝑐 =  2 (1 + 𝜈 )𝜇           (3) 

where 𝜈 is the Poisson ratio and 𝜇 is the shear modulus, equal to :   

𝜇 = 𝑣𝑑
2 𝜌 

(1−2𝜈 )

2 (1−𝜈 )
           (4) 

where 𝜌 is the unit mass of the soil, equal to the soil unit weight divided by the gravitational acceleration.  

 

(c) Zeevaert [2] solves equation (2) as: 

𝜎𝑧 = −𝐸𝑐  𝑤𝑜  
𝜋

2𝐷
sin(

𝜋

2
 

𝑧

𝐷
)            (5) 

where 𝑤𝑜 is the vertical displacement amplitude, given by :  

𝑤𝑜 =  
4𝐷2

𝜋2  
𝜌

𝐸𝑐
 𝐺𝑎𝑣          (6) 

where 𝐺𝑎𝑣  is the maximum vertical ground surface acceleration. 

 

(d) Substituting equations (3), (4) and (6) in (5) we obtain: 

𝜎𝑧 = − (
2

𝜋
 𝐺𝑎𝑣  𝐷 𝜌 ) sin(

𝜋

2
 

𝑧

𝐷
)            (5) 

(e) Considering that during the earthquake, the increase in soil pressure in the saturated soil sediment occurs at constant 

volume, requiring the decrease in soil effective stress to be equal to increase in pore water pressure, 𝜎𝑧 = −𝑢𝑧 , 

hence: 

𝑢𝑧 = (
2

𝜋
 𝐺𝑎𝑣  𝐷 𝜌 ) sin(

𝜋

2
 

𝑧

𝐷
)            (6) 

Equation (6) can be used to determine the increment in pore water pressure caused by the dilatational shear wave.   
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INCREMENT IN SOIL SHEAR STRESS DUE TO SHEAR WAVE 

The shear waves propagate from the firm ground interphase into the soil deposits, producing important shear distortions in 

the soil mass, causing an increase in shear stress which is additive to the static shear stress acting on the soil prior to the 

earthquake (Figures 1 and 2). Furthermore, the shear waves are slower than the dilatational waves and hence arrive later at 

the place of observation. On this basis, it is considered that the pore pressure caused by the dilatational wave has already 

increased by the time the shear waves arrive at the foundation.   

The increment in soil shear stress due to shear waves has been studied by Zeevaert [2-5], who presented the following 

methodology for the computation of the shear stress:  

(a) The time required by the shear wave to travel through the full soil deposit, from firm ground to the surface, is equal 

to ¼ the soil dominant period 𝑇, therefore: 

1

4
𝑇 =  

𝐷

𝑣𝑠
          (7) 

where 𝐷 is the depth between the ground surface and the firm ground, and 𝑣𝑠 is the shear wave velocity. In stratified 

soil deposits, Equation (7) is modified as follows: 

1

4
𝑇 = 𝛴𝑖=1

𝑛  
𝑑𝑖

(𝑣𝑠)𝑖
          (8) 

(b) The shear wave velocity is a function of the dynamic shear modulus 𝜇 as follows : 

𝑣𝑠
2 =

 𝜇

𝜌
      (9) 

 

(c) The dynamic shear modulus 𝜇 can be determined in the field from seismic cone penetration tests, crosshole seismic 

surveys, downhole seismic surveys, or other field tests. Alternatively, it may be determined through laboratory tests 

in soil samples, which may include resonant column tests, free torsion pendulum tests or other.  

 

(d) The shear wave propagates from firm ground to the surface according to the following equation: 

𝑣𝑠
2  

 2𝑢

 𝑧 2
 =  

 2𝑢

 𝑡 2
          (10) 

where 𝑢 is the vertical displacement. Since the values of 𝜇, 𝜌 and consequently 𝑣𝑠 change for every soil layer, 

Zeevaert [3], developed an integration method to solve Equation (10) as follows: 

(e) The algorithms for the computation of the maximum horizontal displacements 𝑖 and the corresponding shear 

stresses 𝑖 in each soil layer for the ground motion induced by the shear waves are given by:  

𝑖+1 =  𝐴𝑖  𝑖 − 𝐵𝑖 𝑖            (11) 

𝑖+1 =  𝐶𝑖 (𝑖
+  𝑖+1) +  𝑖            (12) 

where the coefficients have the following values :  

𝐴𝑖 =   
1− 𝑁𝑖

1+ 𝑁𝑖 
     (13) 

𝐵𝑖 =   
1

1+ 𝑁𝑖 
(
 𝑖

𝜇𝑖
)      (14) 

𝐶𝑖 =
1

2
 𝜌  𝑖  𝜔𝑛

2       (15) 

𝑁𝑖 =  
𝜌  𝑖

2 𝜔𝑛
2

4𝜇𝑖
        (16) 

and  𝜔𝑛 is the angular frequency of the soil mass, which initially can be computed from the soil period as follows: 

𝜔𝑛 =  
2𝜋

𝑇
           (17) 

(f) The calculations start by computing a ground surface displacement 1 equal to : 
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1 =  
𝐺𝑎𝑣

𝜔𝑛
  (18) 

and assume that the increment in shear stress at the ground surface due to the shear wave is zero (1  = 0).   

 

(g) Subsequently equations (11) and (12) are computed for each soil layer starting from the ground surface, using the 

coefficients in equations (13) to (16).    

(h) When the calculations reach firm ground, the horizontal displacement computed should be zero. If this is not the 

case, the angular frequency initially assumed in equation (17) should be corrected and a new iteration undertaken 

from the ground surface to the firm ground.   

 

 

 

Figure 2. Shear stress on helical pile CSR due to shear 

wave 

Figure 1. Shear stress due to shear wave. 

INCREMENT IN SOIL SHEAR STRESS DUE TO OVERTURNING MOMENT TRANSFERRED TO PILES 

SUPPORTING RIGID STRUCTURES 

The present Section considers a rigid superstructure on a rigid mat or box foundation supported by helical piles, as shown in 

Figure 3.  It is assumed that the underside of the foundation slab is not in contact with the soil underneath, therefore the 

vertical loads acting on the structure are directly transferred to the helical piles.    

 

As the result of an earthquake, a horizontal seismic shear force 𝑉𝑀 will be produced on a structure, acting on its centre of 

mass located on a height ℎ𝑀, producing a seismic overturning moment 𝑂𝑇𝑀  as shown in Figure 5.  The overturning moment 

will produce dynamic loads on the piles, which will be additional to the static loads previously acting.   

 

The procedure to determine the horizontal seismic shear force acting on the structure is included in Building Codes. The 

present Section does not summarize any procedure, rather it is assumed that the overturning moment has already been 

computed.    

 

The determination of the dynamic loads transferred to the piles requires undertaking soil-structure interaction calculations.  

For the purposes of the present paper, a simple approach is presented, consisting on computing the increase in pile load 𝛥𝑃𝑖  

due to earthquake using the following equation:   

𝛥𝑃𝑖 =  
𝑀𝑦 𝑥

𝛴 𝑥2 + 
𝑀𝑥 𝑦

𝛴 𝑦2    (19) 
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where  𝑀𝑦 and 𝑀𝑥 the factored overturning moments due to earthquake loading and 𝑥  and  𝑦  are the distances of the piles to 

the center of gravity of the foundation.  

Once the decrease in soil shear strength and the increase in the soil shear stress due to earthquakes has been determined, the 

next step is to carry out laboratory tests to find out if the soil has adequate resistance to develop the necessary CSR to support 

the seismic loads. Triaxial cyclic tests or direct shear tests (cyclic or conventional) may be carried out. Direct shear tests are 

particularly desirable since the distortion produced in the soil sample during the test resembles the distortion of the soil 

between the helices when a helical pile is loaded in the field. The use of direct shear test results to understand the 

development of CSR under static loading has been applied by Padros [6-7].   

On this basis, the methodology presented in previous Sections is shown in Figure 4, where 𝛥𝑠𝑤  is the additional soil shear 

stress due to the shear waves and 𝛥𝑂𝑇𝑀  is the additional soil shear stress due the increase in pile loads caused by the 

overturning moment acting on the superstructure. The confinement effective stress between the helices is 𝜎𝑐 . Furthermore, 

the dilatational wave produces an increase in pore pressure, which leads to a decrease in the confinement effective stress 

𝛥𝜎𝑐  . Therefore, the direct shear test is carried out applying a compressive effective stress  𝜎𝑐 − 𝛥𝜎𝑐  . In that test, the total 

increase in shear stress due to sesimic loads is 𝛥𝑠𝑤  +  𝛥
𝑂𝑇𝑀 

, which has to be compared with the maximum shear 

resistance of the soil.    

 

 

Figure 3. Pile loads due to overturning moment  

 
 

Figure 4. Shear stress increase acting on CSR   

EXAMPLE OF CSR COMPUTATION CONSIDERING SEISMIC CONDITIONS 

General  

An example is presented to illustrate the computation of the CSR of a helical pile subject to seismic load. The example 

considers a rigid superstructure on a rigid shallow foundation supported by helical piles, as shown in Figure 5. The ULS and 

SLS static compressive loads on each pile are 45 ton and 32 ton, respectively. The overturning moments in the X and Y 

directions due to the horizontal seismic shear forces are 1,000 ton·m and 600 ton·m, respectively. A maximum vertical 

ground surface acceleration 𝐺𝑎𝑣  of 1 m/sec2 is considered. The subsurface conditions correspond to a stratified deposit 

comprising granular and cohesive soil layers extending to 24 m depth, where firm ground is encountered. The groundwater 

level is located at the ground surface. The parameters for each soil layer are presented in Table 1.  The shear strength 

parameters of the soil layers are also included in Table 1 (undrained shear resistance Cu and angle of internal friction φ.  

All helical piles have the same size, consisting of a 273 mm shaft diameter and two helices 762 mm diameter, located at 

12.24 m and 13.76 m depth (therefore the helix spacing is 1.524 m). The piles head is at 2 m depth and is pinned to the slab. 

The piles length is 12 m, extending from 2 m to 14 m depth.  Based on CFEM, the unfactored compressive resistance of the 
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helical pile is 210 ton, comprising a shaft friction of 20 ton, CSR of 30 ton and an end bearing of 160 ton. The factored 

geotechnical resistance is hence 84 ton, adequate to support the ULS compressive load of 45 ton. 

 

 

Figure 6. Shear stress computation based on the results 

of a direct shear test. 

Figure 5.  Building and soils conditions used in example   

Table 1. Soil Properties and Parameters. 

Layer Depth (m) Soil Type  Unit Weight (ton/m3) Vs (m/sec) Cu (ton/m2) φ  (deg) 

A 0 – 6 Sand 1.85 90 0 28 
B 6 – 10 Clay 1.80 50 15 0 
C 10 – 16 Sand 1.90 100 0 30 

D 16 – 20 Clay 1.95 70 10 0 

E 20 – 24 Sand 2.00 120 0 32 

 

Considerations  

The computation of the CSR is based on the following considerations: 

(a) Rigid superstructure on a rigid shallow foundation. 

(b) The vertical loads acting on the structure are directly transferred to the helical piles. 

(c) The increase in pore pressure produced by the dilatational waves, which arrive first to the deep foundation location, 

is still present once the shear waves arrive. 

(d) The increase in soil shear stress (due to shear wave action and due to greater pile loads caused by the structure 

overturning moment) occurs at the same time the soil shear strength decreases (due to an increase in pore pressure).  

(e) Soil is saturated.  

(f) The SLS load acting on each pile is 32 ton. Considering that a small vertical pile displacement has developed under 

service conditions, sufficient to fully mobilize the shaft friction but negligible mobilization of end bearing has 

occurred, then the CSR mobilized under SLS conditions is about 32 ton – 20 ton = 12 ton.   Therefore, the CSR 

available to resist the increase in load due seismic forces is about 30 ton – 12 ton = 18 ton. 

(g) The vertical effective stress at mid height between the helices (13 m depth) under static conditions is 11 ton/m2 + 

4.84 ton/m2 = 15.84 ton/m2, where 11 ton/m2 is the vertical stress prior to pile installation and 4.84 ton/m2 is the 

increase in vertical stress caused by the loaded pile under static conditions.   

(h) The confining effective stress increases in the proximity of the pile after this has been installed. On this basis, the 

confining effective stress at mid height between the helices under static conditions is considered equal to about 1.2 

times the vertical effective stress (therefore equal to 13.4 ton/m2).   

(i) The shear stress acting in the soil on vertical planes between the helices under static pile loading conditions was 

calculated as (15.84  ton/m2 – 13.4 ton/m2)/2 = 1.21 ton/m2 

(j) The CSR alone will have to resist the increase in pile load due to earthquake. 
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CSR computations  

(a) Initial calculations 

The shear modulus and the ratios 
𝑑𝑖

(𝑣𝑠)𝑖
 are computed in Table 2. From that Table and equations (8), (17) and (18) we obtain 

the soil period T = 1.1 sec, angular frequency 𝜔𝑛 = 5.7 sec-1 and ground surface displacement 1 = 0.03 m.    

Table 2. Calculation of Soil Mass, Shear Modulus and Soil Period. 

Layer Thickness di 

(m) 

Soil Mass ρ 

(ton·sec2/m4) 

Shear Modulus µ             

(ton/m2) 

di/(Vs)i 

(sec) A 6 1.85 1,525 0.044 
B 4 1.80 450 0.080 

C 6 1.90 1,950 0.060 

D 4 1.95 975 0.057 
E 4 2.00 2,950 0.033 

(b) Increment in pore pressure caused by dilatational wave 

The increment in pore water pressure is computed from equation (6), considering an average unit mass of the soil 𝜌 equal to 

0.193 ton·sec/m4. Substituting the parameters in Equation (6), we obtain the increment in pore water pressure caused by the 

dilatational wave, computed given by the equation below. The results are summarized in Table 3. 

𝑢𝑧 = [
2

𝜋
 (1 

𝑚

𝑠𝑒𝑐2
)  24 𝑚 (0.193 

𝑡𝑜𝑛 ∙ 𝑠𝑒𝑐2

𝑚4
 ] sin (

𝜋

2
 

𝑧

24 𝑚
) = 2.95 sin(

𝜋 𝑧

48
 ) 

Table 3. Increment of Pore Water Pressure due to Dilatational Wave. 

Depth (m) Uz (ton/m2) Depth (m) Uz (ton/m2) Depth (m) Uz (ton/m2) 

0 0 10 1.80 18 2.73 
2 0.39 12 2.09 20 2.85 
4 0.76 13 2.22 22 2.92 

6 1.13 14 2.34 24 2.95 
8 1.48 16 2.55   

(b) Increment in soil shear stress due to shear wave 

From equation (18) the ground surface displacement 1 = 0.03 m is obtained. The increment in shear stress at the ground 

surface due to the shear wave is zero (1  = 0).  Subsequently, equations (11) and (12) are computed for each soil layer 

starting from the ground surface, using the coefficients in equations (13) to (16). The results are included in Table 4. The 

computation results indicate that the horizontal displacement computed at firm ground is zero, which indicates that the 

angular frequency initially assumed in equation (17) is correct, and there is no need to carry out another iteration.    

Table 4. Computation of Increment of Soil Shear Stress and Displacements due to Shear Wave. 

Depth 

(m) 

Layer di (m) ρ 

(ton·sec2/m4) 

µ             

(ton/m2) 

Ni   

x10-3 

Ai Bi 

x10-3 

Ci 

(ton/m3) 

δi  (m) τi            

(ton/m2) 0         0.03 0 
 A 6 1.85 1,525 36.2 0.93 3.80 18.42   

6         0.029 1.10 
 B 4 1.80 450 52.9 0.90 8.44 11.89   

10         0.017 1.64 
 C 6 1.90 1,950 7.27 0.99 1.53 9.45   

16         0.011 2.17 

 D 4 1.95 975 25.9 0.95 4.00 12.61   
20         0.002 2.33 

 E 4 2.00 2,950 8.99 0.98 1.34 13.26   
24         0 2.33 

(c) Increment In soil shear stress due to overturning moment transferred to piles supporting rigid structures 

The increase in pile load 𝛥𝑃𝑖  due to earthquake is computed using equation (19), considering 𝛴𝑥2 = 𝛴𝑦2 = 1,800 m2. The 

maximum increase will occur in the corner piles (designated No’s. 1, 5, 21 and 25 in Figure 5), obtaining  𝛥𝑃𝑖  = ±10.7 ton.  

Consequently, the increase in the shear stress between the helices due to the increase in pile load 𝛥𝑃𝑖  due to earthquake is: 

𝛥𝐶𝑆𝑅 =  
𝛥𝑃𝑖 

𝜋 (𝐷ℎ) (2 𝐷ℎ)
 =

10.7 𝑡𝑜𝑛

𝜋 (0.762 𝑚) (2 · 0.762 𝑚)
= 2.93 

𝑡𝑜𝑛

𝑚2     
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(d) Computation of CSR increase 

As mentioned in consideration (i), the initial shear stress acting on the soil under static conditions (on vertical planes between 

the helices) was assumed to be 1.21 ton/m2. The increase in shear stress due to shear wave action and due to greater pile loads 

caused by the structure overturning moment should be added to this stress. Based on the calculations undertaken in the 

previous Sections, the total increase in the shear stress in vertical planes between the helices 𝛥𝐶𝑆𝑅𝑇𝑂𝑇𝐴𝐿 is equal to:  

𝛥𝐶𝑆𝑅𝑇𝑂𝑇𝐴𝐿 = 1.94 
𝑡𝑜𝑛

𝑚2 +  2.93 
𝑡𝑜𝑛

𝑚2 =  4.87 
𝑡𝑜𝑛  

𝑚2    

which produces a cylindrical shear force equal to 17.8 ton, which is basically the CSR that was available to resist the increase 

in load due seismic forces, as mentioned in consideration (f). The total CSR adding the static plus the dynamic increment is: 

𝐶𝑆𝑅𝑇𝑂𝑇𝐴𝐿 = 1.21 
𝑡𝑜𝑛

𝑚2 +  4.87 
𝑡𝑜𝑛

𝑚2 =  6.08 
𝑡𝑜𝑛  

𝑚2    

Furthermore, to determine the effect that the increase in pore pressure has in the shear resistance, direct shear tests can be 

carried out in representative soil samples retrieved from the soil layers where the helices will be located. In the present 

example, the results from direct shear tests undertaken in a sample obtained from the sand layer located at 13 m depth are 

shown in Figure 6. The figure shows the results of the shear stress and displacement developed applying a compressive stress 

of 13.4 ton/m2. The results of a second test where the increase in pore pressure was deducted from the compressive stress are 

also shown (i.e, 13.4 ton/m2 – 2.2 ton/m2 = 11.2 ton/m2). Based on the comparison between the two tests it is noticed that the 

maximum shear resistance decreases from 7.75 ton/m2 to 6.47 ton/m2 due to the increase in pore pressure. Furthermore, it is 

observed that the CSR has adequate resistance to support the total shear stress acting between the helices (i.e, 6.08 ton/m2 < 

6.47 ton/m2). A rough estimate of the transient maximum pile vertical displacement produced during the earthquake, 

additional to the previous pile vertical displacement under service conditions, may be obtained from Figure 6, equal to about 

4.5 mm – 0.4 mm = 4 mm, which is a conservative estimate because the end bearing was neglected.  

CONCLUSIONS    

1. Soil deposits subject to seismic loading register an increase in shear stress and a decrease in shear strength. These 

should be taken into consideration in the design of foundations.  Increases in shear stress result from the propagation 

of seismic shear waves and due to the increase in pile loads caused by the overturning moment acting on the 

superstructure. Furthermore, the dilatational wave produces an increase in pore pressure, which leads to a decrease 

in the effective stress and consequently a decrease in the soil shear strength. 

 

2. The increase in shear stress due the shear wave and the decrease in shear strength due to the dilatational wave can be 

determined applying Zeevaert’s theory [2-5]. The methodology to determine the increase in pile loads caused by the 

seismic overturning moment can be found in Building Codes.  

 

3. Helical piles can be designed to have adequate resistance against seismic loads by a proper design of CSR. This 

requires leaving additional CSR resistance under SLS conditions such that when the earthquake comes, the CSR still 

has capacity to take the full seismic load. Small pile displacements should be expected, given that small pile vertical 

displacements are required to develop CSR.   
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